Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.31.429001

ABSTRACT

Development of effective antiviral drugs targeting the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) are urgently needed to combat the coronavirus disease 2019 (COVID-19). Oxysterols, defined as oxidized derivatives of cholesterol, include endogenous (naturally occurring) cholesterol metabolites as well as semi-synthetic oxysterol derivatives. We have previously studied the use of semi-synthetic oxysterol derivatives as drug candidates for inhibition of cancer, fibrosis, and bone regeneration. In this study, we have screened a panel of naturally occurring and semi-synthetic oxysterol derivatives for anti-SARS-CoV-2 activity, using a cell culture infection assay. We show that the natural oxysterols, 7-ketocholesterol, 22( R )-hydroxycholesterol, 24( S )-hydroxycholesterol, and 27-hydroxycholesterol, substantially inhibited SARS-CoV-2 propagation in cultured cells. Among semi-synthetic oxysterols, Oxy186 displayed antiviral activity comparable to natural oxysterols. In addition, related oxysterol analogues Oxy210 and Oxy232 displayed more robust anti-SARS-CoV-2 activities, reducing viral replication more than 90% at 10 μM and 99% at 15 μM, respectively. When orally administered in mice, peak plasma concentrations of Oxy210 fall into a therapeutically relevant range (19 μM), based on the dose-dependent curve for antiviral activity in our cell culture infection assay. Mechanistic studies suggest that Oxy210 reduced replication of SARS-CoV-2 with disrupting the formation of double membrane vesicles (DMVs), intracellular membrane compartments associated with viral replication. Oxy210 also inhibited the replication of hepatitis C virus, another RNA virus whose replication is associated with DMVs, but not the replication of the DMV-independent hepatitis D virus. Our study warrants further evaluation of Oxy210 and Oxy232 as a safe and reliable oral medication, which could help protect vulnerable populations with increased risk developing COVID-19.


Subject(s)
COVID-19 , Hepatitis C , Neoplasms , Hepatitis D
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.19.389726

ABSTRACT

Coronavirus disease 2019 (COVID-19) has caused serious public health, social, and economic damage worldwide and effective drugs that prevent or cure COVID-19 are urgently needed. Approved drugs including Hydroxychloroquine, Remdesivir or Interferon were reported to inhibit the infection or propagation of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), however, their clinical efficacies have not yet been well demonstrated. To identify drugs with higher antiviral potency, we screened approved anti-parasitic/anti-protozoal drugs and identified an anti-malarial drug, Mefloquine, which showed the highest anti-SARS-CoV-2 activity among the tested compounds. Mefloquine showed higher anti-SARS-CoV-2 activity than Hydroxychloroquine in VeroE6/TMPRSS2 and Calu-3 cells, with IC50 = 1.28 M, IC90 = 2.31 M, and IC99 = 4.39 M in VeroE6/TMPRSS2 cells. Mefloquine inhibited viral entry after viral attachment to the target cell. Combined treatment with Mefloquine and Nelfinavir, a replication inhibitor, showed synergistic antiviral activity. Our mathematical modeling based on the drug concentration in the lung predicted that Mefloquine administration at a standard treatment dosage could decline viral dynamics in patients, reduce cumulative viral load to 7% and shorten the time until virus elimination by 6.1 days. These data cumulatively underscore Mefloquine as an anti-SARS-CoV-2 entry inhibitor.


Subject(s)
COVID-19
3.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3631397

ABSTRACT

Antiviral treatments targeting the coronavirus disease 2019 (COVID-19) are urgently required. We screened a panel of already-approved drugs in a cell culture model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and identified two new agents having higher antiviral potentials than the drug candidates such as remdesivir and chroloquine: the anti-inflammatory drug Cepharanthine and HIV protease inhibitor Nelfinavir. Cepharanthine inhibited SARS-CoV-2 entry into cells, whilst Nelfinavir inhibited the catalytic activity of viral main protease to suppress viral replication. Consistent with their different modes of action, in vitro assays highlight a synergistic effect of this combined treatment to limit SARS-CoV-2 proliferation. Mathematical modeling in vitro antiviral activity coupled with the known pharmacokinetics for these drugs predicts that Nelfinavir will shorten the period until viral clearance by 5.5-days and the combining Cepharanthine/Nelfinavir enhanced their predicted efficacy to control viral proliferation. In summary, this study identifies a new multidrug combination treatment for COVID-19.Funding: This work was supported by The Agency for Medical Research and Development (AMED) emerging/re-emerging infectious diseases project (JP19fk0108111, JP19fk0108110, JP20fk0108104); the AMED Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS, JP19am0101114, JP19am0101069, JP19am0101111) program; The Japan Society for the Promotion of Science 260 KAKENHI (JP17H04085, JP20H03499, JP15H05707, 19H04839); The JST MIRAI program; and Wellcome Trust funded Investigator award (200838/Z/16/Z). Conflict of Interest: None.


Subject(s)
Coronavirus Infections , Dyskinesia, Drug-Induced , HIV Infections , COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.22.054981

ABSTRACT

Although infection by SARS-CoV-2, the causative agent of COVID-19, is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked MERS-CoV S protein-initiated cell fusion by targeting TMPRSS2, and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on SARS-CoV-2 S protein, ACE2 and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active. Furthermore, nafamostat mesylate blocked SARS-CoV-2 infection of Calu-3 cells with an EC50 around 10 nM, which is below its average blood concentration after intravenous administration through continuous infusion. These findings, together with accumulated clinical data regarding its safety, make nafamostat a likely candidate drug to treat COVID-19.


Subject(s)
Coronavirus Infections , Disseminated Intravascular Coagulation , COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.14.039925

ABSTRACT

Antiviral treatments targeting the emerging coronavirus disease 2019 (COVID-19) are urgently required. We screened a panel of already-approved drugs in a cell culture model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and identified two new antiviral agents: the HIV protease inhibitor Nelfinavir and the anti-inflammatory drug Cepharanthine. In silico modeling shows Nelfinavir binds the SARS-CoV-2 main protease consistent with its inhibition of viral replication, whilst Cepharanthine inhibits viral attachment and entry into cells. Consistent with their different modes of action, in vitro assays highlight a synergistic effect of this combined treatment to limit SARS-CoV-2 proliferation. Mathematical modeling in vitro antiviral activity coupled with the known pharmacokinetics for these drugs predicts that Nelfinavir will facilitate viral clearance. Combining Nelfinavir/Cepharanthine enhanced their predicted efficacy to control viral proliferation, to ameliorate both the progression of disease and risk of transmission. In summary, this study identifies a new multidrug combination treatment for COVID-19.


Subject(s)
COVID-19 , Coronavirus Infections
SELECTION OF CITATIONS
SEARCH DETAIL